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19. Abstract. This paper primarily concerns the estimation of tail parameters for

the marginal distribution F of the terms of a strongly miN g stationary

sequence when 1-F(t) decreases exp- entlally, or is regularly varying as

t -== 0.

The asymptotic properties of the "Hill estimator" for the exponential

parameter or regular variation index are developed within this framework.

Estimation procedures are investigated for tail probabilities and tail

quantiles, both for the individual terms of the process and for their maxima

over groups of consecutive terms. The latter case requires estimation of the

so called "extremal index", and substantially involves the local dependence

structure of the sequence.
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Introduction

The problem of estimating the tail probability l-F(x) = P(X>x) of a r.v.

X, for large x has obvious practical importance, for example where large values

of X have serious or catastrophic implications for health or safety. In such

cases one typically has limited data, so that nonparametric procedures often

cannot be successfully applied, but one may also be unwilling to fit a totally

parametrized distribution over the entire data range.

A popular compromise with wide applicability is to assume that the tail

1-F(x) decays approximately in an exponential manner e -X /P as x --+ w or (by log

transformations) as an approximate Inverse power law in the sense of regular

variation, viz.

1-F(tx) -a

for some index a > 0.

Estimation procedures for the exponential or regular variation parameters,

based on "high" values in an i.i.d. sample X 1 ..... Xn have been studied by a

number of authors. In particular the so-called "Hill-estimator" (cf. [10] [7]

[2] [6] [11] [1]) is based on the upper cn = o(n)) order statistics X(n)

nnljgc n , having the form, in the exponential case

A -l C

-_ I c n (X(n)_X(n))
Pn n J=l cn

and in the regularly varying case is changed by using log X instead of X. One

of the main purposes of the present work is to obtain the properties of this

and related estimators (and in particular, asymptotic normality) if the

observations are no longer independent, but appropriate long range dependence

restrictions are assumed, and to extend these results to estimation of tail
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probabilities and quantiles. We are grateful to T. Hsing for sending us his

concurrent work [9] which concerns some of the topics considered here (i.e. the

Hill estimate) under similar mixing conditions but using more detailed and

precise local dependence assumptions rather than univariate tail conditions as

here. Our principal results are given in Sections 4 and 5, following

preliminary general central limit results in Sections 2 and 3.

Section 6 proceeds to the original question of estimating tail

probabilities 1-F(x) for large x, and tail quantiles, i.e. the (1-p)th quantile

of F for small p values. Asymptotic distributional results are obtained for

natural estimates based on the tail parameter estimates of Sections 4 and 5.

In the foregoing resulcs conditions on the dependence structure are

obtained so that properties of these estimates for the tail of the marginal

d.f. still hold as in the i.i.d. situation. It can also be of interest to

estimate tail properties involving not one but groups of the r.v.'s Xi , when it

must be expected that the form of the results will also change with

introduction of dependence. Such a case is also discussed in Section 6 where

tail properties of the maximum MN = max(X1 ..... XN) of N consecutive values are

considered. In cases when "local dependence" between the X is not too high

the tail properties of the maximum are the same as in the i.i.d. case. However

high local dependence introduces clustering of high values which changes the

tail properties of the maximum in a very simple way depending on a single

parameter 0 known as the "extremal index" of the sequence. In Section 6 the

tail parameter estimates are combined with analogously constructed estimates of

0 to give estimates of tail probabilities and tail quantiles for the maximum.

The discussion in Sections 3-6 involve exponential tail decay. In Section

7 the modifications needed for regularly varying tails are briefly indicated.

In Section 8 the methods are applied to data consisting of tide heights at
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a station on the Dutch coast. Estimates are obtained for both tail parameter

and extremal index with various choices for the number of upper order

statistics used. The effect of these choices provides some insight into the

properties of the procedure. In Section 9 simulations are carried out for two

processes with exponential tails (i.i.d. and moving average sequences) and two

with Pareto tails (ioving average and autoregressive sequences). The

simulations show that convergence is somewhat slow, and that it might be of

interest to investigate "higher order approximations". Nevertheless, the

present methods certainly seem sufficient for many engineering problems where

ample data is available, such as the water levels from Section 8.

Finally in this introduction we note the precise form of the strong mixing

assumption to be used throughout for the (strictly) stationary sequence

X1,X2 ... . Write 1ij for the a-field a{Xk: i~k j} generated by X.X+ ..... X

and for fixed n, e<n.

ane = sup{IP(AB)-P(A)P(B)I: A 6 lk' B C !k+e,n' lk~n-e}.

Then {X will be termed "strongly mixing (an'e, n )" if anlen-=+O for some

e n=o(n). It may be shown that the existence of such a sequence {Pn} follows if

a -- 0 as n -- w for each e > 0. This "array form" of strong mixing is of

course implied by the standard definition (in which k+e is not restricted to

values no larger than n). For particular purposes weaker forms of the

condition may be used - replacing 1ij by the a-field generated by the functions

of XiXi+ 1 .... X relevant to the problem (such as 1 (X >un) or (Xj-un)+ for

given u). However in the present context this is unlikely to achieve a

significant reduction of conditions and we simply assume the above full strong

mixing condition.
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2. Notation, assumptions, and general results.

It will be assumed throughout that

(i) (XiI is stationary (with marginal d.f. F). strongly mixing

(an e , en )

(ii) integers k n - are chosen such that kn (ane +en/n) -* 0. Write
n

rn = [n/kn]. Hence. in particular. en=o(rn).

(iii) Integers cn - and "levels" un are chosen with (1-F(u)) c n/n

(iv) + is a left-continuous function on the positive real line

R+ = [Ow), of bounded variation on finite ranges, and such that

o.= 0, 1P2(X) < C.

The conditions (i) - (iv) will be referred to as the Basic Assumptions.

Other assumptions will be made as needed and stated. For example the condition

(2.1) cn = o(kn)

will also occasionally be used (when stated). While the main results will be

proved without this assumption, its use leads to simplification of sufficient

conditions.

Write

n
O= - 1 4((Xi-Un) )

n i=l

Pn = 'n = 1 n*((Xl-Un)+)'n

A primary aim of this section is to show that

(2.2) (c An) (P *-Pn N(OI)

n n n n

where

k r

(2.3) Xn  -a va< in P((X -Un)+) )n j=l

under appropriate conditions on F and ae. The dependence of the P onn , e*n
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unknown underlying parameters restricts their practical usefulness as

estimators. However it will be seen that the result (2.2) is basic in

providing asymptotic distributional results for natural estimators formed by

modifying *3
Pn

The proof of (2.2) will be carried out by splitting the sum for 13 into
n

groups which may be assumed independent, and applying the Lindeberg Central

Limit Theorem. Write mn = n-kn r and define "intervals" j . ... k to each
n

consist of rn consecutive integers, the first mn+l being separated by one

integer, and the remainder abutting, i.e.,

J, ((i-l)r + i. (i-l)rn+i+l..... ir +i-), 1 i m

((i-l)rn+mn+ (i-l)r +m +2,...,irn+mn) m n i k

Let Ji denote the first (r -e ) integers in Jit 1 i k n , and writei n n i n

Y Y n ,J (X fu n i n

Ui (=Un) = (XNC) (Y ) 1

JCi

Vi = n, d = Z i - Ui

Wi ( nid = (Xncn)-" 4(Yi ) 1 i n m+.

k m n
Then in Z +?V = ( ncn) % 2(y,(Yj) so that (2.2) may be rewritten as

1 1 1

k m
(2.4) n (Zi-Zi) + (Wi-Wi) N(0,1).

1 1
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In the following and throughout undesignated ranges for sums and products are

to be taken form 1 to kn

Lemma 2.1. Assume that the basic assumptions hold and also

(2.5) kn(varVn1 + varWn1)e 0

Then
k Pm

(2.6) (i) k(Vi_9V d 0 (ii) m(Wi_9W d O.
1 1

Further it then follows that in proving (2.4) the second sum may be

omitted and the r.v. 's in the first sum assumed independent. More specifically

under the above conditions. (2.4) (and hence (2.2)) hold if and only if

(2.7) 7(ZiClZi) N(O,1)

r
Ait d -%4

with assumed i.i.d., Z I (Nn cnd I I(Y ))"J=l

Proof: Since the Vn*i are defined by groups of X which are (for large n)

separated by at least en. (rnlen --# by (ii) of the basic assumptions), it

follows by a standard induction on the mixing condition (cf. [12]) that

1I{exP(it(VJ-V))) - 179{exp(it(VJ-1V))} 16knan,en

which tends to zero as n -+ . Hence in showing (2.6) (i) it may be assumed

that the terms are independent. But with this assumption the variance of the

sum is kn var Vn, 1 # 0 by (2.5) so that (2.6) (i) holds. The proof of (2.6)

(ii) is entirely similar.

It follows at once that (2.4) holds if and only if

d(2.8) I(Z 1 -9Zi d -# N(O.l).
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Now, to prove that (2.7) implies (2.8). let (UiVi) be pairs having the

same distribution as (Ui.Vi) but being independent for 1 I k . If (2.7)

holds, it holds with the specific choice Z= Ui + V and since clearly (2.6),

(I) holds with Vi replaced by Vi it follows that 2(U i-Ui) 4 N(O,1). But again

- {(exp(it2(Uj-8U -gfexp(it(U -9U.))}I 16 k a 0
n nn

and in the second (product) term U may be replaced by U( U ) so that

dI(Ui_9Ui) + N(0,1). Finally since 2Z = I + TV it follows from (2.6) that

(2.8) and thus (2.4) and finally (2.2) hold. Thus (2.7) implies (2.2). The

converse is similarly shown by simply reversing the chain of arguments.

This lemma leads at once to a preliminary but useful form of the main

result.

Theorem 2.2. Suppose that (2.5) holds, in addition to the basic conditions.

Then (2.2) holds if and only if the Lindeberg condition

(2.9) kn g((Zn ,1 -9Z )2 1(JZ n as n Zneach e > 0

is satisfied.

Proof: This is Immediate from Lemma 2.1 and the Lindeberg Central Limit

Theorem since kn var Z - 1.

Finally in this section we show that (2.1) provides a simple sufficient

condition for (2.5). Less restrictive sufficient conditions will be given

later when exponential decay is assumed.



Lemma 2.3. If p(x) 0 all x and (2.1) holds (ie. cn = o(kn)) in addition to

the basic conditions, then

k 2r

(2.10) varZ so that X -k 1 P
n .l ni n n =-nL{=

and (2.5) holds.
r n ]2 2) ((llY>)

Proof: g (Y) ] = r' { V)  = r n2 { 2 2
n nn Y 0

r2 L#2 (Yj) P{YI>O} = r2 2Un)) 92(Yl)nn n

rc n 2

K r -2 g~ 'n n 1

since l-F(un) cn/n and P(Y,) 0 0, each i. Since knr n n, it thus follows

that
r r

n n
(82 P(Yj) = o{8(2( 2
1 1

by (2.1) which yields (2.10).
[r nle n] V. d tflosta

Since clearly Z 1 V where V' V it follows thatn1 i=1 n i n. 1 n

9Z 2 [rle] I V2 and hence
n.1 nnn n,n

k k 2 e
(2.11) k varV -2 r V D K9 Z K n

n n.1 rn n.1 rn n n,1 r

by (2.10) since varZ = 1/kn . But en/r kn en/n - 0 so that
n.1 n n n n n

kn var Vn, 1 _ 0. Similarly kn var Wn, 1 - 0. showing (2.5).

3. Exponentially decreasing tails.

To obtain more detailed results we assume the following exponential-like

rate of decay for the tail 1-F(x) of F:
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(3.1) (1-F(t+x))/(1-F(t)) -i e -x / p as t -*w, all x 0, some P > 0.

Except for the final theorem of this section it will be assumed that the

function P(x) is non-negative and nondecreasing. We shall refer to the

Augmented Basic Assumptions to indicate the addition of these conditions.

Lemma 3.1. If the Augmented Basic Assumptions and (3.1) hold, and if

(3.2) 0e dP(x) < c, some a > 0,
0

then

c
(3.3) 9,p(Yn 1 ) . e _ d-()4

n n 0 W

Proof: gp(YI) = fu o (x-un) dF(x)

n

= fO +(x) dF(un + x)

= JO (1-F(u n + x) d+(x)

~(1-F(Un)) f' e-X/P dP(x)

by Theorem 1.8 (ii) of [5]. The result then follows from (iii) of the Basic

Assumptions.

Note that this result of course holds if it is assumed just that

814(Yl 1) < rather than 1 2(Y 1 < - in the Basic Assumptions. Using this,

the lemma yields the following simple but useful facts.

Lemma 3.2. Under the assumptions of Lemma 3.1, with X* as in (2.10).
n

(3.4) kn 8Zn 1 ~A(Cn/Xn A e _OeX/P d+(x)

S 2 Cn Cn

(3.5) k 5Z = 1 + A - (1+o(1)1 K(I +
n n,1 t)

nn nn

If also (3.2) holds with *2 replacing 4, then
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k rn
(3.6) lir inf Xn = lir inf - -a-n (. P(yj)) 2  f0 Pe-X/ di 2 (x)

Cn 1

and

c e e2

(3.7) k k K min(n. -- ) + o(l)
n n n

Proof: (3.4) follows at once from (3.3) since rn ~ n/k n and (3.5) is obtained

from (3.4) by noting that var Zn = 1/k n

r

If *(x) 0 then (1 P(Y))2  rn g+2 (Y1) so that
1

lim infX liminfkc- r s2 (Y1) , giving (3.6) by (3.3) with +2 for 4.minf X min n n n

Finally as in the proof of Lemma 2.3. by (2.11), and using (3.5),

ke e c ce
knl k n ,n K ' 2 K n n (1 K ' +0(1)1n, r 11. 1  r n X+n n n n n

since 8 /r ke /n -+ 0. The second bound k K K 2 /(r X ) follows at

once from the obvious (Minkowski) inequality < e2 gqJ2 (Y )/(cXn) and

(3.3) with *2 in place of +. 0

The conditions (2.5) used in Theorem 2.2 may be readily verified directly

in particular cases. However simple sufficient conditions are obtainable from

(3.7), viz either

(3.8) cnen / (nn) -+0

or

(3.9) e2/(rn) -X 0

The (more useful) condition (3.8) is implied in particular by (2.1). viz

Cn=O(kn). by Lemma 2.3, (3.6) and the basic assumption knen/n -+ 0.

To give simple sufficient conditions for the Lindeberg criterion it is

convenient to truncate P(Y) as follows. For constants wn to be specified.
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define

Y = Y 1(Y w) + wn 1(Y>w) .  < j n

r

Zi= (c nXn)__, ,rn ,(Yj)
J=1

Lemma 3.3. Let the Augmented Basic Assumptions and (3.1) hold, and for some

0 < e < 1, let w satisfy

(3.10) r f exp{(e-1 )xdp 2 (x) -- *0 as n -*0.n n n

Then kn(Z-Z)2 --. 0 as n - -.

Proof' Note, using Minkowski's Inequality, that

r
-2 2 Z 2  n 2rn cn n =( --Z) (d(Y )-(wn))l >

n((4(Y 1) - (wn))21(YI >w )

gfq(Y1)2 - 40(wnl2 )l(Yl1>wn )

= P:+ (\O(X-Un) 2-*(Wn) 2) dF(x)

n n
= : (1-F(y+Un)) dq2(y)

n

(l+e)(1-F(Un)) SO exp[(e-13-1l)x]dP2(x)

2 2

n

by Proposition 1.7 of [5]. from which the desired conclusion follows by (3.10)

since l-F(un) - cn/nand rnk nn.

The following theorems are now simply obtained.

Theorem 3.4 Let the Augmented Basic Assumptions, (2.5), (3.1). (3.2) all hold,

and let wn satisfy (3.10) and

(3.11) (cnXn) rn 4(wn) -+O.
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Then (2.2) holds, i.e. (cA) (A3n-Pn) N(O.1).
n n n n

Proof: By Theorem 2.2 it is sufficient to show that the Lindeberg Condition

(2.9) holds. Now if X.Y are any two random variables, it is readily checked

that

(3.12) (X+Y)2 1(Ix+yI{a) 4(X21(JIXe/2 ) + yl(IYIF(2)))

from which it follows (with Zj-9Z' for X and (ZI-gZI) - (Zj-9Zj) for Y) that

kfn {(Z]-9Zl) 2 1(Z Il-8Zl>e))  4k n (Zji-Zj)21({Zj-9ZiJ>e/2)) + 4kn (Z1 -Z)2 .

The first term on the right tends to zero trivially since

OZi(CnX n)-rnw(Wn) --+ 0 by (3.11). and the last term tends to zero by Lenme

3.3. so that (2.9) holds, as desired.

In the final result of this section we generalize Theorem 3.4 to include

functions *(x) which can be negative and not necessarily monotone.

Theorem 3.5 Suppose the assumptions of Theorem 3.4 are satisfied for each of

the functions pl(x), +2 (x) and write P(x) = all(x) + a2#2 (x). a1 1 a2 (positive

or negative) constants. Let X(l), '-(2), Xn be defined as in (2.3) relative to
n n n

41' 2' respectively, and suppose that X(k) KX k=1,2. n=1,2,3 ..... Thenn n

S -1 n -1
(2.2) holds, i.e. Pn = C n I P(X Cu) n 3 = n cn L4(Xl-un)+). satisfy

(Cn/An) (Pn-Pn) 4 N(O.I).

Proof: If o n(k) = C 1  n -u ( n n k=1.2 then Theorem 3.4
Pn n 1 'k((i

nnn n

Lindeberg conditions
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(3.14) k g{(Z(k) - gZ(ki)2 Iz(k)aZ(k)i \}+0 asn n(,eacha>0
n.1 nl

hold. where Z(k) = (X k)cn" 'Pk( k = 1.2.' n.1 n nX je 1k~ k=12

Since X(k  KX this Lindeberg Condition continues to hold for each k =n n

1.2 if X(k) is replaced by X in the definition of Z(k) and hence it holds for
n n n.1

a1 Z
(1) + a2 Z(2 ) by the inequality (3.12). The remaining conditions of1n.1 n.1

Theorem 2.2 regarding p are readily checked, giving the stated result.

4. The Hill Estimator

Let

n
Nn(X) = 2 1

i=l Yx

be the number of exceedances of x by X1 .... Xn, and let (Zn} be a sequence of

"levels", non-random or random. The Hill estimator n is then defined by

a a n

= n(zn) nz) i7l (Xi-zn)+n~ n( n) i-l

The two cases which mainly have been considered are zn u n. with {un} a given

non-random sequence, and z = X(n). the c -th largest of X.....Xn . with (Cn} ano-ano eqec, n n  c n n n

n

given non-random sequence of integers. This leads to the two estimators

a n
(4.1) n(un) 1 i ( +n n) (Xi-Un)+

and

(4.2) a(X(n)) c (n)(i)= i- e(Xxi  ) +
n cn cn i=l n

in (X(n) _ X(n))=c n x cn i=l n
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For the present purposes a somewhat stronger tail condition than before is

needed. We suppose F has one derivative F' which satisfies

F'(t) 1

(4.3) lur Ft =
t-w I-F(t)

Further, for fUn ) (or (cn }) given, define (cn} (or fUn)) by

(4.4) n_ (lF(U) = 1.

n

and assume throughout that c n , c /n -+ 0. Here, if un is given, the cn

nn
obtained from (4.4) ay not be an integer. However, in that case we replace c n

by its integer part. It is straightforward to check that this does not affect

the proofs below.

We will prove that the estimators in (4.1) and (4.2) are asymptotically

normal, with means

(4.5) 1n = nc 8(X1 - Un)

n

- {(X1 - Un)IX 1 > un-

It follows from (3.1) (which in turn is implied by (4.3), cf. Lemma A2 of the

appendix), as in Lemma 3.1, that

(4.6) Pn * P 1 w

Let

F(x) = 1-F(x) - l(Xl>X)

and define, with notation similar to that in Section 2,

k r n

(4.7) Nn = nVar .1 ((Xj Un)+ - P l(x>un
Cn J1= n

Further. let
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N n(x) - n F(x)
n nEn(x) =n(x) - Pnnn cn

Lemma 4.1 (1) Suppose (4.3) holds, c n n  ,

(4.8) 3f - I (Xi-Un)+ - Pn-1 Sn(un) 4 N(0,I)
i=1

and either the first or the second term in (4.8) is tight (so that both are

tight). Then

(4.9) n: En (u) n IL (Xi Pu+ 3 1S (u}x EnUn) f 3 nn c X i - u n + -n n - n n

P-0

and

(4.10) NnU) E(u) N(O,1).
n

(ii) If furthermore

(4.11) (zn - Un) is tight,

and

(4.12) S n (Zn) - Sn(Un) 0.O

then

Nn (Zn) N (u n

xn  En(zn) - En (un) 0.

so that also

F Nn (zn ) E ( N(O.I).

Khn n

Proof. Since c n n F(un) by (4.4). we have that
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(4.13) E(u) - Ef* T k- I (Xi - un )+ - Pn] - Sn(Un) 3n(Un)

Further, since cn n n-'3, and the two terms in (4.8) are tight, it

follows that

P in P(4.14) -N(u) 1, i 2 (X _ Un)+ 4P
( n n c n i=l

and hence also Pn (un) -. P. Now (4.9) and hence (4.10) readily follow using

(4.8), (4.14) and tightness of Sn(un).

It is obvious that if (3.1) holds, then F(zn)/F(u 1 if Zn -Un  0.

However, since (4.3) implies (3.1) by Lenma A2 of the appendix, this follows

from (4.3). Similar arguments to those above now show that if in addition

(4.12) holds, then

I P(4.15) C Nn(zn) 1.

Thus, to establish the rest of the lenma, it is enough to show that

f 1n(6n) - P(u))

We will first bound this expression on the set (zn > un}. Formally, this

may be done by multiplying by I(zn>un} throughout, but for simplicity of

notation we will just assume zn>un in the computations below. Then,

n n
I (Xi-u n )+  I I (Xi-zn)+ + (zn-u n) Nn(zn ) + rni=l i=l

n
for rn = I (Xi-un ) l (un <z

i=l 'n in

By straightforward computations,
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C

{1C(n)FZ) ( (S (u-
n n N(n) n(Un)  Un n Nn(Zn )

fc ( 
rn

+ .
n P(un) + -nzn

n Nn(z n 3~ nn] N n(z)n

=A +B +C, say.

It follows directly from (4.15). (4.12) and P(un) P 4 that A n 40asn 
0 .

Further, since F(x) = 1-F(x). it follows from (4.3) that

log ) n)J n-F(u +s) ds-n .U1 CPFU n) = r0 1_F(U n+S) d

= -(Zn-Un)/P + O(zn-Un )

According to Taylor's formula, 1-x = -log x + o(log x). as log x -1 0. and

hence, using (4.4) and F(zn)/F(un) 1 

(4.16) n(f(u) n f(zn)) =cn[-

F(un )

= cn (zn-Un)/P + OCn(Zn-Un)

Thus,
Bn = c/X n (Nn(Z [cn(ZnUn)/P + O(c (z -u )]1n(un) + U -Zn}
B n I n x1n~~ [n n n)/ n n n n n n n

= (z-U) { Nn(Zn ) (I + o(1)) - 1 2> 0

by (4.11) and (4.15), since 
1n(un) .

Finally, to show that Cn * 0 it suffices by (4.15) to prove that

rn P 0
(4.17) - -en on
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From (4.11), it follows that we may choose z' non-random, with P(z' > z ) -I 1
n n n

and (c nA n) 1/4 (z - un) n 0. Since rn is increasing in zn . it is hence enough

to prove (4.17) with z replaced by zn . It then follows from (4.16) that

n

R n ~~ c n Xn Cn

0 (zu- ] 0 as n

PHence also C +0. and the desired conclusion holds on the set {z > U

Similar considerations on (zn < UnI then conclude the proof.

It seems likely that under conditions similar to those in Section 2. the

sequence of processes (Sn(un + x); jxi 1) is tight, and has a continuous

limit in D[-1.1]. In that case (4.12) would hold for any sequence {z n} with

Zn-u 4 0. However, here we will consider only zn = X(n)

n

Lemma 4.2 Suppose Sn (u) Z. for some random variable Z, and that (4.12)

holds for any non-random sequence (Zn) with fA (zn-un) bounded. Then

(4.12) holds also for z = X(n ) i.e.
n c n

(4.18) Sn(X~n)) - Sn(Un) 0
n

and

(4.19) n (X~n) u - n(un)
n n

Proof. By definition N (X(n)) = c and hence
n c nn
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c - nf(X(n)

S (X(n)) = n
n cn

Let U = (I/(I-F)) " be the right continuous inverse of 1/(I-F) - 1/f and set,

for xE R.,

n =U( n 1
n cn 1 -x__ n/C

so that

(4.20) {S (X(n)) K }={ Xn) K z}
n n

Also u = U(n/cn) and hence

(z -u) = 14nn n ,d

By (i) of the remark after Lemma A2 of the appendix, (4.3) implies that

ZT ( 1
n n

uniformly for s in the considered range, and thus

_- )  1 -_log (I _ x -_

which clearly is bounded, so that (4.12) holds for this X(n).C
n

By (4.20) and the definition of X
(n )

cn

{ (X(n) x } {(z ) <
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{ n -n (Z) }
I c n N n

S(Sn (zn) x}

Since Sn(un) i Z it follows from (4.12) that

(Sn(X~n)). Sn(Un) (Z, Z),

n

which implies Sn(X~n)) - Sn(Un) Z-Z = 0. proving (4.18).
n

To prove (4.19). set

Z =U + T ,n n n n

so that

, (X(n) u x) = (Xn) Zn= (Z) (cn
cn

= {IpS n ( z n )  XP Cn (Cn-n F(Zn))

I~c
nn

(c n-n F(Znd)  c n C(Z n-U n)/Pl = x.

TXn Cn Jn n

Since S n(z n) converges in distribution, reasoning as in the first part of the

proof shows that (4.19) holds. N

Asymptotic normality of the Hill estimators (4.1) and (4.2) now follows

from the results of Sections 2 and 3.

Theorem 4.3 (i) Suppose (4.3) holds, c nX n . and the conditions of Theorem
n n

3.5 are satisfied for
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4vl(x) = x 1 O f j 2 (x) = l(x O) .

Then

(4.21) Nn(Un) E (u n N(O.l)

(ii) If the assumptions of part (i) are satisfied and if. writing Ii = [un. Zn)

if z n > un and [Z.U) otherwise.

r n
(4.22) - - var J -

n n i=1 {XieIn}

for any non-random {Zn} with F /-A (zn-un) bounded, then

Nn(X(n )) xC ] nCun) P
n E(X(n)) __a E(u) 0

n n n

and hence

N nX
(n))

(423) cn E (X(n)) 4N(OI)
Xn n cn

Proof. (i) Setting a1=1, a2=-1 in Theorem 3.5. it follows that (4.8) holds.

Since also the other conditions of Lenua 4.1 (i) are satisfied. (4.21) follows.

(ii) Clearly

ISn(z) Sn(Un) 1  1 n (1 ]
I {XT} - n {lXl }

and hence, by Lemmas 4.2. 4.1 the result follows if we prove that the righthand

side of the expression above tends to zero in probability.

Proceeding along similar, but somewhat cruder lines than in Lemma 2.1,

split the integers between 1 and n up into [n/kn] "intervals" of length rn .
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with one shorter interval remaining. As in Lemma 2.1 the sums of the l{XiEIn}

for i belonging to the first, third, ... interval (the "odd intervals") are

asymptotically independent, and it hence follows from (4.22) that the sum over

all i belonging to the odd intervals tends to zero. Similarly, the sum over all

i belonging to "even intervals" tends to zero.

Finally,

gl{XiCIn} - 91{XiEin}I l{{c I} = If(Zn) F(ud - c nn-1 lzn-nI/P.

by (4.16). Thus the expectation of the sum over i belonging to the "remaining

short interval" is bounded by

c
r n n IZ -u nI -*0n

n n

since rn/n -+ 0 and vn - (z -u ) is bounded. This completes the proof of part
n n n n n

(ii).

5. Estimation of X
n

For inference purposes it is of course desirable to estimate the basic

unknown variance X n . Natural estimators are given by

kn

(5.1) Xn = (Nn(Zn)) 1 iV f T [(X J-zn)+ -n 1(X >z

where Ii is the interval ((i-l)rn+1 .... ir) and z is either the nonrandom

(cn)
level un or the random level X n Here for simplicity we consider the formern n

case and show that in Theorem 4.3 X may be replaced by the estimator X undern n

-. Pappropriate conditions. This will clearly be the case if X A n -+ 1 which will
n n

be shown to hold at least for sequences {Cn} satisfying further conditions
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including a strengthening of (3.8), viz.

(5.2) cn = o(kX).

PNote that since Nn(un)/cn + 1 the divisor Nn(un) in (4.1) may be replaced

by c so that it is sufficient to show that

(5.3) (c)- i { I . [(X-u)+ - 1 X >n] - (()}2 P 1

where Nn( i) = 1 1 (X>) Using the notation of Section 2 with

P(x) = x+ - 0l(x>O)' (5.3) becomes

(5.4) M[Zi - (c nNn)-(Pn-P) Nn (I d ]

Now (5.4) will hold if both

"- 2 P
(5.5) 2 Zi

and

(5.6) (cn xn- (n-P)2 '(N(Ii))2  0

The following lemma shows that the Zi may be assumed independent in

proving (5.5).

Lemma 5.1 Assume the conditions of Lenin 3.1 for l(x)=x+. and 42{x)=l(x>O).

and let p(x) = *l(x) -P 2(x). Let X(1),X(2 )n  be defined as in (2.3) relative
2 n n n

to "1.@2.@. respectively and let (5.2) hold. Then (with Section 2 notation)

I 2 U2 + 0. It then follows that (5.5) holds if it holds with the Zi

assumed independent.

Proof: With i = Zi - Ui we have

2(5.7) 2z U2 = 22 ViZ + I V2 .
Ii i I i.



- 24 -

Defining V I ) , V(2 ) with respect to 41 ' 2 as V is defined relative to ', weni 'ni 11'2 n

have

= n(X(1  n' vn) -ni

so that

V2n k kn8V2n KX -k (X(1)gV()2 + X(2)gV(2)2

ni n2  n LV 1  n n n 1 1
2)

Kc nn/(nXn) + o(0).

by (3.7), applied to + 1 and 42 . This tends to zero by (5.2) and the basic

assumption k e /n -* 0. Hence 1 P 0. Further is bounded, by a similar
n n i i

argument, using (3.5) and (5.2) so that Zis tight and hencei

Ii V I)(I Zi P) P 0. The first statement thus follows from (5.7) and

the second by the argument used in Lemma 2.1 since e.g.

Ilexp(itl U12) -Ugexp(itU2)1 9 16k a .0
j - n n,,#n

The main result of this section now follows readily. In this mk = mn~k

will be used to denote the kth central moment 9(Z1-9Z1 )
k of

Z 1 = (c X- ) P'(x -u )+

J=l j

Theorem 5.2 Let F satisfy (4.3). Let the basic assumptions and (2.5) hold for

'P1(x) = x+, 'P2 (x) = 1(x>O ) , and write 4(x) = 4'1(x)-f 2(x). Let X(1)'X(2) X be
(x>0y'2( n 'n 'n

defined as in (2.3) relative to 41,+2,4P respectively and suppose that

1 ) . k=1.2, n=1,2.3,... . Assume that c/ n  , knm -0,0 and (5.2)
n nnnnn4

holds both as stated and with X (2) replacing X . Then X A -P 1 and hence
n n n n

(4.23) holds with X n replacing X n'

Proof: As noted above it is sufficient to show that (5.5) and (5.6) both hold.
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Write Z Zn=m. By (3.4) applied to P1 and '2 it is readily seen that

(5.8) kn Im K(cnAnS)4

so that km - 0 by (5.2). and hence S(l72) = k n(varZ nl+m 2) = 1+o(1). Thus

2(5.5) clearly follows if it is shown that var(I Zi) -* 0. Now assuming

independence of the Zi by Lemma 5.1. it is readily checked that

2 2 4 +m d+m2 m2)

var Zi = k var Z1  k(m4m3m + 2

The first term knm4 tends to zero by assumption. The second is dominated by

4k m3 4 m - o(1) kn/4 m which tends to zero by (5.8) and (5.2). Since m2=1/kn N2 n

the final term is 4m2 which also tends to zero by (5.8) and (5.2). Hence (5.5)

follows.

Finally to show (5.6) note (defining Z(2) as Z but with respect to
n1 nl P2

that

1 IN'I) 2  k(X( 2 )A )gZ(2n 2

n n= n n n n, 1

K(l + /CX(2)k

by (3.5) and the assumed boundedness of X{2)/X . Hence it follows from (5.2)
n n

with XC2) for X that the means of the random variables (c X )- I I(N(i) 2 are

uniformly bounded, and hence these r.v. 's form a tight sequence. Since P

(cf remark after (4.14)), (5.6) now follows.

6. Tail and quantile estimtors

An important reason for interest in the estimators from the previous

section is estimation of small tail probabilities and large quantiles. For

example quantiles are important for design of engineering structures and tail

probabilities give the reliability of existing structures.
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Thus, the problem is to use observations X1 .... Xn to estimate

probabilities or quantiles which are well outside "the range of the sample" so

that non-parametric methods do not apply. Our starting point will be the tail

condition (3.1), viz.

(6.1) 1 - F(x+t) e-X/3,
(6.1) l-F(t) e* t-*w,xE .

To obtain the estimators we will just assume equality in 6.1. and replace P by

Pn and 1-F(z) by N n(z)/n, with Nn (z) the number of exceedances of z, as before.

In this Section we will only consider the choice z = X(n). for sequences (cn},
c nn

with cn -0, c /n -# 0, although the results from Section 4 indicate this is not

crucial.

Sometimes interest is not in tails and quantiles of the observations

themselves, but in the corresponding quantities for maxima over some period, of

length N, say. For example, in the water level data studied in Section 8

below, measurements are taken twice daily, at high tide, but the code

stipulates that the probability of flooding the dike during a year should not

exceed 1/10,000. Thus, the quantity needed is the p-th quantile of the yearly

maxima, for p=1/10,000. To obtain estimators, we will assume an extremal index

0>0 exists, as discussed in the introduction, so that

(6.2) P(MN > z + x) 1 - F(z+x)No

l-exp(-NO(l-F(z+x))}

1-exp(-NO (1-F(z) )e-X/P }

in the range considered. Estimators are again obtained by assuming equality

and replacing 6 by 0n and 13 by 13n' 1-F(z) by Nn(z)/n.

Thus far, we have discussed four cases, i.e. estimation of tails and

quantiles for individual random variables and for maxima. There is also a
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fifth case which we will comment on briefly, when N is much larger than n, and

one wants to estimate the distribution of NN . We will treat the four cases

separately, the ideas each time being the same but the details somewhat

different.

The discussion will be in terms of exponential-type tails satisfying

(6.1). However, an extension to regularly varying tails is only a matter of

straightforward translation. This is briefly discussed in the next section.

I. Tatt estimation As outlined above, the tail probability

p = Pn = 1-F(y),

for y=yn increasing with n. is estimated by

c n
(6.3) n _ exp{-(yX~ni)/13

n

c n
exp{-W /1}.

n n n

for

w = y _ x(n).n cn

A simple "propagation of errors" calculation for var (e -A/ n in terms of the

mean and variance of Pn suggests that the asymptotic variance of pn can be

estimated by

-2- 2W n/ n(6.4) X(n n -2  n cn n

n n "n Pn

for Xn given by (5.1). We will prove asymptotic normality when n-4-, y = yn 

nPn -+ 0. The last condition in particular means that wn -* , for wn = y - un.
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where un (=U(n/cn)) satisfies (4.4), as before. Further, put

g(t) = 1/p - F'(t)/(l-F(t)).

Theorem 6.1 Suppose the conditions of Theorem 4.3 are satisfied and that

npn -4 0. If furthermore

-. P(6.5) ] cAX sup gt+u n /P 0, n
t +0

and

(6.6) W2X /c P 0.
nn n

then

(6.7) M 1/2 (p- d
6( n) - 2 (n - Pn) + N(O,).

Proof It follows from -,I-/X7-.o, (4.19) and Theorem 3.5 that
n n

W - w = un - X(n) -PO .and since npn -#0 implies w -o-w, also W /w P 1
n n n n

Further, it then follows from Theorem 4.3 and (6.6) that

W w I n

13n

Hence it is sufficient to prove asymptotic normality with W replaced by w andn n

1n replaced by 1 in (6.4).

Now, write
Fn = n/ n En(X( n )) = /An (1n(X (n))

n n

G = /X (x(n) u)Gn n n c n
n

so that Fn  N(0,1) and Cn is tight, by Theorem 4.3, and Lemma 4.2 and (4.19).

Then,
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^ c w 17-C rX"Fn , (._nna n n) / 1+ n n),pn = - x nn n "nf

c -Wn/ F w F G
-e n + n nn+ n n

prcn PrWn

since F and G are tight, and since

n n

cnn

by assumption, where ' means that the ratio of the two sides tends to one in

probability. Further, since cn/n = F(un), Pn = F(un + w)

- e -pn =-e e (1-en/ n+n
F(u )

Hence

X PC2 r  F(U1/2 n n n u

5.2, it follows that the first term is asymptotically standard normal.

It thus only remains to prove that the last term tends to zero. By

-- (F +n + e m 1 ) t s te s

Taylor's formula (cf. the proof of Bn -0i ema41.ti emi

asymptotically equivalent (in the sense that the ratio of the two expressions

tends to one in probability) to

Wn -

F nu u/P) ~
nnn

2 flog -- fO l nSnd

n F(Un) n

P0

5.2.~~ ~ ~ ~ it folw tha ttoe fis ter is asmttial stndr noml.m mm
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by (6.5).

Remark 6.2 (i) Since Xn A n 1 and Wn/w n -P 1. (6.5) and (6.6) might as well

have been stated with X n Wn replaced by X n . wn . However, (6.5). (6.6) have

the advantage that they involve only observed quantities, except for the

function g.

(ii) From the form of (MPn) and (6.6) it follows that the relative error

ippn-1 tends to zero.

2. Quantile estimation Let x = U(l/p) be the (1-p)-th quantile (assumed to be

unique) of the marginal d.f. F of the Xi's, so that F(x) = 1-p. Reasoning as

before. x, p may be estimated by
^ -Cn + X n

(6.9) xp = n log n +(n)
n

for p = Pn --# 0, with nPn -0* . This time, the asymptotic variance is

estimated by

( Cn 2
(6.10) ) = (lo-) X /C

Theorem 6.3 Suppose the conditions of Theorem 4.3 are satisfied, nPn ., and

that F satisfies A4 of the appendix. If furthermore

6 n n P- 0
(6.11) log(cn/nP n j aun)

with a(u n) as in A4

a 1/2 ad
(6.12) X(xp) (Xpn - xpn -_+ N(0,1).

Proof With the same notation as in the proof of Theorem 6.1,
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(6.13) nn nn G n

log(Cn/nPn ) ( - x Fn + log(n /nP n'

n n
og(cn/nPn) {Xpn Un _Anlo npn~n

Here the first term is asymptotically standard normal, since Fn -*N(O.1), Gn

is tight, and cn/npn

To prove that the second term tends to zero, first note that -log(l-F(un)

- log(n/c n) by (4.4). Let V be the right-continuous inverse of -log(l-F(un))

and a(t) = a(V(t)), as in the proof of Lemma Al. Then, for a(t) = a(log(t)).

we have that

a(!'- = a(V(log(Z-)))
c

n n

a(u) ,

and hence

(6.14) n n ann/c) -O n -Slog(c n/npn ) n

Further, X = pU(/Pn), un = U(n/cn), so that the second term in (6.13) may be

written as

cn/npn  cn/npnn61__ n U(s n ds ds
(6.1- s-) - - 2df a(sn/cn ) -
1 n n 1

by the appendix (Lemma A2) and the following remark. Now A9 which follows from

A4 implies that for sufficiently large n and a > 0. with p as in A3

a(sn/c n) n )(l+)s -
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uniformly for s 1 ([5] Proposition 1.7.5). Hence (6.15) is bounded by

cn/npn p+e ds

2da(R-) f (1+e)s
n 1

Together with (6.14) this shows that the second term in (6.13) tends to zero in

probability if A3 and A4 hold.

Remark 6.4 (1) Note that for the exponential distribution A4 holds with c=O,

any p)O. and any a satisfying A8

(ii) Similarly to Remark 6.2, X n may be replaced by Xn in (6.11).

3. Esttmatton of the tail of SN For this we need an estimator 6n. say, for

the extremal index 0)0 (assumed to exist). An example of such an estimator

(studied in [8]) is

r
1 An

6n =6O(zn)- 1 Z il'iz)

where qi(zn) = 1 if there is at least one exceedance of Zn by the X J's for j in

the i-th block, Ji9 and zero otherwise. As before z = X( ) is the natural
n

choice. Further, let
k

n c iOn = - 71CUn),
n

with cn , un as in (4.4). and define an auxilliary quantity n  n by

assuming equality in (6.2), i.e. assume that

P(MN > y) = 1-exp{-Non(1-F(y))}

= l-exp{-NonPn}.

so that 0 --+ 6. Here we will not confine ourselves to somi special form ofn
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n . n , but will only assume we have some estimators 
6n and constants 6n which

satisfy

6 -*6> 0.n

(6.16) n n

and (6.20) below.

The obvious estimate of p n(N) = P(MN>y) , for Y=Yn ' is

(6.17) Pn(N) = l-exp{-N on Pn)

for pn given by (6.3). Its variance may be estimated by

(6.18) X(pn(N)) = n 6n(1-Pn(N)) 'CPn),

with X(p n) given by (6.4).

In the case when Pn(N) is small one may, by Taylor's formula, use the

alternative estimator

Pn(N) = N On Pn'

and estimate its variance by

N2 j2 p)'

4 PTheorem 6.5 Suppose NPn - 0, (6.16) holds, and the conditions of Theorem 6.3

are satisfied. Then

(6.19) (n(N)) -  (Pn(N) - P(MN > y)) = Tn + (pn) -' Onpn(6n-n)

where T bN(0,1). If in addition

(6.20) n n ( n
. W 9 n-_ ) 4O.

n

then

X(Pn(N)) 4 (pn(N) - P(MN>y)) N(0.1).
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P
Proof: By Remark 6.3 (1i). p,/pn -# 1. and hence Npn -0 and 6 n* 6, 0

imply that

(6.21) N(On n - nPn) # 0. n -

Thus, by the definition of 6n,n

Pn(N) - P(MN > Y) - (1-Pn(N))(exp{N( npn-OnPn)} - 1)

S(1-pn(N))N {n (pn-pn ) + (0n-0)pn + (0 -On)Pn).

and hence

,(pn(N))".pnCN) _p(N>y)) - X(In) (pnPn) + X(Pn) n PnCenn )

+ "(p 6 n Pn(n"n)

It follows from (6.16), j3*3. and

M ~ ~ ) 2 
- ~

(6.22) Xcn P n j n n

Pn n n n

that the second term on the righthand side tends to zero in probability.

Setting

T = X(pn) (;-pn)

now proves (6.19). Since 6 n 0 > 0 by (6.16), the last result of the theoremn

follows at once from (6.19) and (6.20).

Remark 6.6 (i) To establish (G.20) is a separate problem in probability

theory, and clearly depends on which particular process one is considering.

However, from a practical point of view, (6.20) requires that N is large

compared to typical cluster sizes. Of course, (6.17) should only be used when

this is the case.
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P

(ii) The assumption Npn -+ 0 (or, equivalently, that N pn - 0 ) is only used for

(6.21). However, (6.21) obviously is also satisfied in more general

circumstances, and p n(N) seems useful also for N such that P(N > yn ) does not

tend to zero. This corresponds to the fifth case mentioned in the beginning of

this section. U

4. Esttmatton of quantttes of N Assume that the distribution of MN has a

unique (1-p)-th quantile x (N) given byP

p = P(MN > x (N)).

The straightforward estimator of x p(N) then is

^ c N 0
x (N c n n X(n)

Xp(N nl~ n log(I/(1-p)) +  n

and an estimator of its asymptotic variance is

X p(N)) = n log(1/(1-p)) }] n /Cn

For PfPn small one may alternatively use

l cn N On + x(n)
x p(N) = log n p c '

a a r c nNO 1nX(x p(N)) = n n p X n/Cn

Theorem 6.7 Suppose the conditions of Theorems 6.3 and 6.5 are satisfied for

Pn replaced by (log(l/(1-p)))/N (implying in particular that nPnI - 0). Then

a a44a 6
(6.23) X(x(N)M) (x (N) -x p(N)) =T n+ X(x (N)) (n log~-pppn p

n

where T N(O.I). If furthermoren
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(6.24) (x ( N)) (0n-6n 0.

then

X(x (N)) (x (N) - x (N)) N(0o1).
p p p

Proof: Define the function

W(O) = log(l/(l-p)) < 0 1.
NO

Then

x (N) = x

with x the (l-p)-th quantile of F. as before. Further, comparing with (6.9)P

we have that

x (N) x

Hence

x (N)-x (N)= (x ~ -x )+(x -xp p TO n) - (O) TO n) - nc)

=1log. + (X -x
6 W( n) TOcn)
n

Now, since On/O n 1. it follows from Theorem 6.3, by straightforwardn n

arguments, that

T X(x (N)) (xc) - x1Tc))

N(0.1). n -* ,

which proves (6.23). Since n3~P #P, (6.24) implies that the last term in (6.23)

tends to zero in probability, which concludes the proof of the theorem.

7. Regularly varying tails

We now very briefly indicate how the results should be translated when the
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tail 1-F decreases in a "polynomial" (regularly varying), rather than

exponential, manner. More specifically condition (3.1) is replaced by

(7.1) l-F(xt) x-1/13
1-F(t) - t ---**, x > 0.

Clearly, if a positive random variable X has distribution function F

satisfying (7.1) then the distribution function of logX satisfies (6.1) with

the same P. The following condition replaces (4.3) for the present case,

(7.2) tF'(t) s 1 as tl-F(t) "3

For the convenience of the reader, we reformulate some of the results of

Sections 4 and 6 for distribution functions satisfying (7.1) or (7.2).

Define now (cf. (4.1))

n n
(7.3) 1n(zn) = l I (logX-z n)+)/{l 1 1i=1I o1 (1i9Zn)}

1 n

z 1(log X i-Z n)+ ,
~n n =1in

- n(zn) i=I

where N in the present section has been redefined as
n

n

N n(X)= 1 1n(X i=l (log Xi>x}"

Let Xn be as in (2.3) and X n be as in (5.1). but with Xi replaced by

logX1. Theorem 4.3 may be immediately restated in the present context. For

example if the tail condition (7.2) holds and the other conditions of Theorem

4.3 are satisfied with Xi replaced by log Xi. then

(7.4) n X n (n(Zn)-Pn) N(O.I),



-38-

for zn=un and zn=log X(n) where 3n =- (lOgXl-U) +. Similarly Theorem 5.2n n n C On = RC-- n (O~-n+

n n

may be simply adapted to give a result under which (7.4) holds with

nnreplacing X n"

Next consider the analogue of Theorem 6.1. In addition to the

specifications above let

g(t) = e t F '(e t

(7.5) 1-F(e t)

pn = 1-F(eY)

and let pn and Wn be as in (6.3) but with X replaced by log X. Then the

formulation of the Theorem 6.1 goes through without further changes.

To adapt Theorem 6.3. replace A4 by

tx F'(tx) 1

(7.6) lim =-F(tx) cx- p

with -Y > 0 satisfying

(7.7) lim -(tx) x- p

t-0 -(t)

Let x = log U(l/p) and let x p be as in (6.9) but with X replaced by log X.

Then the formulation of Theorem 6.3 goes through, with a(t) replaced by i(et).

8. Application to water level data.

Reliable high tide water levels are available from about 1885 onwards at

five stations along the Dutch coast. We restrict ourselves to the station Hoek

van Holland (part of the city of Rotterdam) and observe that high water levels

are mainly due to wind storms. All data obtained outside winter periods,

October 1 - March 15, are removed: significant wind storms mainly occur during
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the winter.

One is interested in the tail of the marginal distribution, in view of the

design of sea dikes. Since high levels are mainly due to wind storms, there is

short range dependence in the data - the influence of a severe wind storm

typically lasts several days - but not much long range dependence. The theory

of clustering of high values and extremal indices seems suitable for

description of the available data. Also at first glance the exponential

distribution gives a reasonable fit and the data seems stationary. Since

extrapolation outside the range of observations is quite critical, it seems

wise to consider a larger class of distributions than Just the exponential one.

so we adopt assumption Al. In order to single out the influence of wind storm

activity we did not use the original observations but so-called set up values,

that is the difference between the observed value and the value predicted on

the basis of the movements of sun, moon and earth ("astronomical levels").

In this way a data set of size 17,544 covering the years 1887-1985 is

obtained. The estimates 1n and 6n were calculated (cf. (4.1) and (6.2)) for

various levels u and the 95% two-sided confidence interval for P obtained.

Figure 8.1 shows 1n and its estimated confidence interval against the chosen

levels u . The blocksize rn = 30 has been used for the intervals (c.f. formula

(5.1)). However. the intervals were rather insensitive to changes in rn. As

expected the value of 1n fluctuates substantially when un is high, since then

few observations are used. From a theoretical point of view a bias could

develop when un is low (since then 13n may differ significantly from 13). This

phenomenon does not seem to occur in the range considered here. Figure 8.2

shows 0n plotted against the chosen level un. The approximate monotonicity of

this function points towards a serious bias of the estimation method for low

levels. However, n is clearly less than one.n
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Fig. 8.1 Estimates 13n=P n(u) and approximate 95X confidence intervals for 1,
based on n=17,544 tide level measurements at Hoek van Holland
(rn=30).
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Fig. 8.2 Estimates 6 n=0n(u) of the extremal index 6 for the same tide level

measurements as in Fig. 8.1.

9. Simlations

To assess the behaviour of 1 for small samples the following processes

were simulated,
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EMAO: Xt = e 1 {et} i.i.d.

ENAl: X = e t + e t+ J exponential r.v.'s

PMAl: Xt = e t + et+1  1 (et} i.i.d. Pareto
t r.v.s with P(et>x)=l/x

PARl: Xt = (.958Xt_ 1 + et)/l.9 5  for x > 1.

The first two of these processes have asymptotically exponential tails, and the

last two have asymptotically Pareto tails. All four have =l, and the 8-values

are 1, 1, 0.50, 0.51.

The simulation for the PARl-process was started with X = 0, discarding the

first 500 values. To give an extra check on the results, several of the

simulations were independently prograned and run twice, using different

standard random number generators. For each replication the quantity

V ] (Zn): On-P

n

was computed, for the first two processes from (4.1), (4.2) and (5.1). and for

the PAM1 and PARl-processes from the formulae in Subsection 6.5, using the

logarithms of the observations. In the simulations (except for fig. 9.1b)) the

sample size was n = 4000 and cn was chosen as np for p = .1 and p = .05, i.e.

cn was 400 or 200. Here, we used the value 4000 to yield cn 's for which the

deviations from the normal limit still are quite clear.

All the simulations were performed both for "fixed c n" and "fixed u n".

However, as was expected, the differences between the two cases were quite

small, and hence only the "fixed c n" results are exhibited below.

According to Theorems 5.2 and 4.3 (ii), V should be approximately normally

distributed. The results of the simulations are given in Tables 9.1, 9.2. and
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Figure 9.1 below.

E°K -O .07 .04 .04 .02
.05 .0 .03 .05 .01

EA1 .1 .08 .04 .05 .02

FAI .05 .08 .04 .05 .01

I .10 .02 .06 .01

Normal probability .05 .05 .025 .025

Table 9.1. Values of v(x) = #{simulations with Vfx}/2000 and v(x) = 1-v(x)
based on 2000 simulations of each of the eight cases, for sample size n--4000,
fixed cn and block size rn 20.

block size v(-1.64) ;(1.64) v(-1.96) v(1.96)
r

2 .13 .04 .08 .02
, .11 .03 .07 .01

10 .10 .03 j .06 .01
20 .10 .02 .06 .01
40 .10 .03 .06 .01

Normal 03 .0 .01
probability "05 .05 .025 .025

Table 9.2 Values of v(x) = #(simulations with V x}/2000 and ;(x)=l-v(x)
based on 2000 simulations of each of the seven cases, for the PMAl-processes.
with sample size n--4000 and fixed c = np for p = .1. i.e. cn = 400.
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(b) n = 4.00
Fif. 9.1 Htistograms and normal proba bility plot of V-values from 2000
simulations of each of the sample sizes n = 4000 (Fig. 9. l.a) and n = 8000
(Fig. 9.1.b) for the PiAl-process. In the simulations c was fixed, and equal

to np for p=.l. the block size was rn = 20, and the smooth curve in the
histograms is the standard normal density.

From the results above it can be seen that even for c = 400 and n = 4,000n

there are clear deviations from the limit. A main reason for this is

variability, and to some extent bias, of the X -estimator. In addition, the

stronger dependence in the PARl-process also seems to slow down convergence.
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For cn = 800, say, (and n = 8000) the normal fit is much better as seen from

Fig. 9.1.

It is clear that the block sizes r =2 and r n4--4 are too small for then n

PXAl-process (c.f. Table 9.2). However, there does not seem to be much

difference between rn = 10, 20 or 40, even if one also looks at the values of

X. This is as expected, since 0 = .51, and hence clusters on the average

contain about two exceedances.

Aioendix Tail conditions

We use three types of tail conditions which are increasingly more

restrictive.

a. (Domain of attraction condition) Suppose

Al lim 1-F(t+x) -x/1 (x C f)
t14W 1-F(t) = e

for some positive constant 1.

b. (Smoothness condition) Suppose F has a derivative F' and

A2 lim= 119•
t-4 l-F(t) =

c. (Second order condition) Suppose there exists a positive function a

satisfying

A3 lim a ( t+ x )  (x E )t-40 a(t) =eP

for some positive constant p such that

F' (t+x)_

A4 lm l-Fi. t+x) 1 (x-p)
W a(t)

for some real constant c.
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Remark Note that A4 implies A3 if c ;d 0.

Lemma Al A4 implies

l-F(t+x) -x/P 3P

lrn l-F(t) -c e l1 -e (x R
tW a(t)

locally uniformly.

Proof By Al (which follows from A4) with H :=-log(l-F)

ex/J3 1-F(t+x) 1 H(t+x) - H(t) - x/3
e -F(t)___________

ax(t) a(t)

f r F'(t+s) 1 s e*1 ds
0'11-F' 13) a(t)0

by A4 and [5. Theorem 1.8 (ii)] (or [4], for c=0O). The local uniformity

follows from the local uniformity in A4.

Lenmma A2

1. c *b *a.

2. Let V be the (right continuous) inverse function of -log(l-F). Equivalent

forms of a,b and c are

a'. Suppose

A5 lim V(t+x) -V(t) =P x (x C )

for some positive constant P3.

b' Suppose V has a derivative V' and

A6 lim W'(t) = 13

c' Suppose there exists a positive function a satisfying
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A7 a(t+x) = e-ppx (x e R)
t a(t) =

for some positive constant p, such that

AS lim V'(t+x) - 0 = de-Bpx (x C R)

t-4 a(t)

for some real constant d = -p2c.

Proof 1. The implications are immediate since any function a(t) satisfying A3

converges to zero (t -+ W).

2. For the equivalence of a and a', see [[5] Proposition 1.7(9)]. The

equivalence of b and b is immediate.

c(=>c'; First note that A3 and A4 together are equivalent to A3 and A4 with x-O

and similarly A7 and A8 are equivalent to A7 and AS with x=O. Let a(x)=a(V(x))

and let V+" be the right-continuous inverse of V (so that typically V " =

-log(l-F)). Since

1 =F'(t
V. (V-(t)) -F(t)"

for x=O the left hand side of A4 equals

lim -1 V1V{t))-a = -I lIm V(V'(t))-P = -li V(s)-P

t-01 PV (V( t) a(V(t)) p2 9t-o a(V+(t)) 9 4 a(s)

Since the equivalence of A3 and A7 is immediate from a'. it now follows that c

holds if and only if c' holds.

Remark. (i) Let U = (1/(l-F))*, so that U(t) = V(log t). Then A6 at once

translates into tU'(t) -* P, and A8 into

A9t u' dx-p
(9 40 a(Log t) i

(ii) Let X 1 1 X2 "... be i.i.d, with distribution function F. Condition a
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is equivalent to

P(nmx(X1 .... $X) - U(n) x) -* exp {-e-XP

(n - co) for all x. Condition b implies that

F -{X~n) -(-

has asymptotically a standard normal distribution, where c - c /n -, 0 andnn

{X~n)gi 1  are the descending order statistics of X11.. ,X Condition c (cf.

Lemma A1 ) is sufficient for the asymptotic normality of Hill's estimator, (cf.

[3] Theorem 3.1 and Remark 4).
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